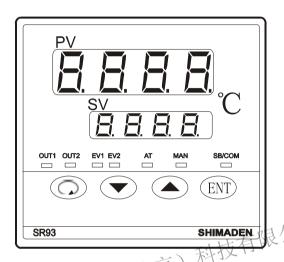
日本岛电 SR90 系列 PID 调节器 中文操作说明

希曼顿 (北京) 科技有限公司 010-62611201

目 录


1.	仪表的]显示面极和功能键	1 -
2.		〔程图说明	
3.	入门的]快速设置例(简单加热系统)	1 -
4.	用户的]基本设置窗口	
	4.1.	传感器类型和测量范围	2 -
	4.2.	调节输出正/反作用	2 -
	4.3.	双输出时工作方式的设置(选件)	3 -
	4.4.	SSR(P型)和继电器接点(Y型)的输出比例周期:	3 -
	4.5.	系统 PID 参数和自整定	3 -
	4.6.	PID 参数手动调整(初学跳过)	
	4.7.	PID 算法外的其他方式	
	4.8.	对应二组 PID 参数的调节输出限幅	
5.	事件和	报警设置	
	5.1.	事件和报警方式	4 -
	5.2.	设定报警值	5 -
	5.3.	报警的回差	5 -
	5.4.	设定报警值	5 -
6.	其他以	能	5 -
	6.1.	调节输出的手动/自动扰动切换。	5 -
太	6.2.	上电缓起动功能	
At-	6.3.	测量值显示补偿和滤波时间常数(初学者可跳过此项)	
	6.4.	设定值的限制	
	6.5.	超调抑制系数 SF	
	6.6.	控制输出的人工补偿系数 Mr	
	6.7.	双调节输出间的死区参数	
7.		J能	
	7.1.	设定值偏移(双设定)	
	7.2.	模拟变送输出(不能与通讯同时选择)	
	7.3.	单相加热器断线和环路报警	
	7.4.	数字通信(选件,详见通讯学习软件)	
8.		- 护用的数字锁功能 KEY LOCK:	
9.	有关仪	z表安装的注意事项(本说明同样适用岛电的其它仪表)	
	9.1.	仪表的安装	
	9.2.	安装仪表的场地必须注意	
	9.3.	仪表的接线要求	
	9.4.	仪表抗干扰的措施	9 -

10. 仪表出	出错信息	9 -
	热电偶或铂电阻输入的仪表显示不正常:	
10.2.	直流输入的仪表显示不正常	9 -
10.3.	无调节输出	9-

希曼顿 (北京) 科技有限公司 010-62611201

SR90 系列是在全面总结 SR70、SR73A 及 SR60 基础上的高性能的单回路调节 器。0.3 级精度、四种外形尺寸、四位超大 LED 显示, 带手动和模拟变送、设定 值偏移(SB)、双输出及两组专家 PID 参数、一组外部开关、两路报警和事件输 出,以及通讯功能。

1. 仪表的显示面板和功能键

四位超大红色 LED 和四位绿色 LED 测量值 PV 和设定值 SV 参数窗口 错误信息 七个指示灯 OUT1(绿) OUT2(绿) 亮时有调节输出。 EV1 (红) EV2 (红) 亮时有报警输出。 AT (绿): 闪烁时自整定 MAN (绿) 、 闪烁时为手动状态 SB/COM(绿): 亮时为两者之一的状 杰。

希曼劉1.1仪表面板

循环键: 选择各子窗口和 0、1 窗口群间的转换。

ENT)

增减键:增减数字大小和修改字符参数。

确认键:数字和参数修改后按该键表示确认。

2 操作流程图说明

SR90 系列所有参数窗口可分为两个窗口群(0-X 窗口群和1-X 窗口群),子 窗口和虚线表示的选件窗口共 66 个。每个窗口采用了编号,例如传感器量程选 择窗口[1-51],表示第1窗口群的第51号窗口。按增减健修改参数时,面板SV 窗口的小数点闪动,按 ENT 键确认修改后,小数点灭。

3. 入门的快速设置例(简单加热系统)

某加热系统, 仪表选用 SR93-8P-N-90-1000, K 型热偶 0.0~800.0℃输 入,P型输出接固态继电器。单设定值,设定温度为 600.0℃,EV1 上限绝对值 报警值 650.0℃, EV2 下限绝对值报警值 550℃, 报警为上电抑制。设置步骤如 下:

- 1) 在[1-51] 窗口,将传感器量程代码设定为: 05(K 型热偶 0.0~800.0 °C) 。
- 2) 在[1-52]窗口,选择传感器量程的单位℃(0.0~800.0℃)。
- 3) 在[1-45]窗口,将调节输出极性设为: rA 反作用(加热)。
- 4) 在[1-10] 窗口,将调节输出的时间比例周期设为:2秒。
- 5) 在[0-0]窗口, 按增、减键将 SV 值设为 600,0℃, 按 ENT 键确认。
- 6) 在[1-21] 窗口, 将 EV1 报警方式设为: 上限绝对值(HA)。
- 7) 在[1-24] 窗口, 将 EV2 报警方式设为: 下限绝对值(LA)。
- 8) 在[1-26] 窗口,下限报警应具有上电抑制功能,设为:2。
- 9) 在[0-5]窗口,设EV1报警值:650.0℃;在[0-6]设EV2报警值:550.0℃。
- 10) 系统接成闭环后, 在[0-4] AT 功能窗口按增/减键将 OFF 改为 ON 状态 后,按ENT 键确认启动自整定,AT 灯闪烁自整定起动。

当炉温到达设定值时,经两个周期振荡,AT灯灭,自整定完成。

4. 用户的基本设置窗口

1) 传感器类型和范围/单位

-62611201 法有限公司 0[10<u>5</u>1]/[1-52]窗口

2) 调节输出正/反作用

3) SSR(P型)和继电器接点(Y型)的输出比例周期 [1-10]窗口

[0-4] 窗口

4) PID 参数的自整定 AT 执行 5) PID 参数和调节输出限幅

[1-2]~[1-9]窗口

4.1. 传感器类型和测量范围

此窗口需首先设置,一旦更改将清除其它与量程有关的参数,例如设定 值 SV。

温度输入的设定: 在[1-51] "r.Ant"窗口, 按增/减键选择传感器类型和 测量范围代码(参照流程图上的量程代码表), 按确认键(ENT)确认。此外,可在 [1-52] 窗口选择温度测量的摄氏(\mathbb{C}) 或华氏(\mathbb{F}) 的单位。

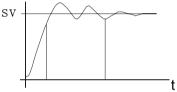
注: 注意铂电阻 Pt100 与 JPt100(旧国标 BA2)的标准区别。

直流输入的设定(可编显示量程):在[1-55]窗口选择直流信号的小数点 位置(DP): XXXX、XXX. X、XX. XX、XX. XX. [1-53][1-54]设置直流信号显示范围 的上、下限值: -1999~9999, 最大间隔 10~5000。由此定义了直流信号的工程 单位。例如: 4~20m A表示为 0~100.0 兆帕的压力量程。

4.2. 调节输出正/反作用

单输出时在[1-45] "Act"窗口,选择调节输出反作用(加热)或正作用(致冷)。 **反作用(rf)**: PV 测量值与SV 设定值的正偏差越大,调节输出越小(加热系统)。

正作用(JR): PV 测量值与 SV 设定值的正偏差越大,调节输出越大(致冷系统)。


4.3. 双输出时工作方式的设置(选件)

- 1) [1-45] **反作用:** 此时 0UT1 为<u>反作用</u>, 0UT2 为<u>正作用</u>, 一般用于加热/致冷等。
- **2)** [1-45] **正作用:** 此时 OUT 为<u>反作</u>用,OUT2 也为<u>反作用</u>,一般用于<u>特殊</u>用途的两级带主辅加热的系统(详见应用例)。

4.4. SSR(P型)和继电器接点(Y型)的输出比例周期:

在[1-10][1-19]窗口分别设置 OUT1 和 OUT2 的输出比例周期。在比例周期内,占空比脉宽调节输出正比于 PID 运算,用于交流过零调功。P 型输出比例周期一般选 2~12 秒(出厂值 3 秒)。继电器接点(Y 型)输出比例周期一般选 20~30 秒(出厂值 30 秒)。周期短调节变化快,适合小惯性系统;惯性大的周期可选长些。负载电流大于 300A 时,可配功率扩展板触发晶闸管。还可配**周波控制器,**具有节能、不打表针,调节精度高和提高电源功率因数的优点。

4.5. 系统 PID 参数和自整定

AT 启动 AT 结束 图 4.1 自整定示意图

△ 自整定在下述的情况下被禁止:

- 1) 手动状态时不执行
- 2) P=0, ON/OFF 控制时不执行²⁰¹
- 3) PV 测量值超量程时不执行

4归第2,口3种锁定方式

写自整定执行时,其它操作被禁止。 系统使用前,可利用自整定功能,方便

地找到系统最佳的 PID 参数,提高调节品质。在[0-0]窗口设定 SV 值后, 在[0-4]窗口,可执行自整定 AT: 执行(on)或停止(off)。如图示的 AT 自整定起动 on 后, AT 灯亮,在测量 PV 值到达 SV 设定值后,将自动造成对系统的二、三次扰动。根据超调振荡的大小和恢复的周期,自动算出系统的 PID 参数。AT 整定完成,AT 灯灭,系统恢复正常控制。

4.6. PID 参数手动调整(初学跳过)

可在[1-2]~[1-16] PID 窗口群中观察或手动修改整定后的参数。对于滞后和变频控制等特殊系统, 若反复整定效果不理想,可手动修改 PID 参数。

- 1) 当到达稳态前超调过大,如对到达稳态时间要求不高,可增大比例克服超调。
 - 2) 如要加快到达稳态的时间,而允许少量超调时,可适当减小比例带。
- 3) 当测量值在设定值上下缓慢波动时,可适当增加积分时间或增大比例带。
 - 4) 当测量值在设定值上下频繁波动时,可适当减小微分时间。

4.7. PID 算法外的其他方式

手动更改 PID 参数设定窗口,有下述的调节方式:

位式调节: 当 P=0FF 时, 积分 I 和微分 D 参数被自动取消, 出现位式灵敏度 调整参数 DF,用于调整位式动作宽度,例如:反作用时,设定值 500℃,灵敏度 10℃,"Y"型调节继电器接点在 505℃时关断,在 495℃或低于 495℃时吸合。

此外 D=OFF 时为比例积分 PI 调节

I=OFF 时为比例微分 PD 调节

I=OFF和 D=OFF时为纯比例 P调节

4.8. 对应二组 PID 参数的调节输出限幅

- 1) 调节输出 1 的 PID 窗口: [1-2]~[1-7]和限幅窗口: [1-8][1-9]。
- 2) 调节输出 2 的 PID 窗口(选件): [1-11]~[1-16]和限幅: [1-17][1-18]。

输出限幅:可设对应 PID 号的输出下限 0-L(0~99%) 和上限 0-H(1~100%)。 例如: 0-L 设 20%和 0-H 设 80%,对应 $0\sim10V$ 和 $4\sim20$ mA 分别是 $2\sim8V$ 和 7.2~16.8mA。适用于限定阀门开度,避开如线性阀的非线性区,伺服动作范 围、减小加热功率以及对特殊加热元件某升温段的功率限制等。限幅虽能减小超 调,如果因调节量不足将影响调节速度造成欠调(如长时间温度不能到达)。对反 作用的加热, 会因维持下限输出造成连续超调, 一般不设下限(0.0%)。

事件和报警设置 5.

5.1. 事件和报警方式

捧 旗公司 010-62611201 SR90 提供了 EV1~EV2 两个事件继电器接点(选件), 在[1-21][1-24]事件方 式窗口可选择。8.种事件、设置 OFF 为取消

· 1/21/2011 6/30 NT 01 1/2 MII						
希罗罗	报警类型	报警类型				
Нd	上限偏差值报警	od	上下限偏差外报警			
Ld	下限偏差值报警	Гd	上下限偏差内报警			
НЯ	上限绝对值报警	50	超量程报警			
LA	下限绝对值报警	НЬ	加热器断线报警			

报警事件介绍如下:

报警设定点 报警设定点

I A

低<-PV->高

HΑ

超量程 SO 报警:测量 PV 值超过上下限量程范围的±10%报警。此时调节输 出为零。

ĒЫ

偏差设定点 SV 偏差设定点

50

绝对值报警:报警值固定,不随设定值改变。

НН

偏差值报警:报警值与设定值保持固定偏差值,跟随设定值改变。 НН

PV上限绝对值 PV下限绝对值 PV上限偏差 PV下限偏差 上、下限偏差外 上、下限偏差内 超量程 on on on on on on <u>on</u> on <u>on</u> <u>on</u> **OFF** OFF 0FF

SV 偏差设定点 偏差设定点 SV 偏差设定点 SV 偏差设定点

低<-PV->高 低<-PV->高

图 5.1 报警方式

5.2. 设定报警值

在[0-5][0-6]设定报警继电器的实际报警值或偏差值。

5.3. 报警的回差

在[1-22][1-25]报警的回差值。回差(动作灵敏度)是避免报警误动作和频繁 动作的调整参数。进入报警区时,报警动作:直到退出回差区,报警才解除。例 如: 500℃上限绝对值报警, 回差 3℃。当测量值 PV 超过 500℃时,报警动作: PV 值降至小于 497℃时,报警才解除。

5.4. 报警的上电抑制和非抑制

[1-23][1-26]设置报警的抑制方式。

- 1) 无抑制,只要处于报警区内,就会产生报警。
- 2) 初次上电状态时报警抑制。初次上电,报警抑制。禁止首次上电报警, 只有再次进入报警区,报警才动作。例如:不希望下限报警继电器首次上电动 作,错误地切断系统电源。
 - 3) 初次上电状态或改变设定值时报警抑制。
 - 4)运行状态时无抑制。

6. 其他功能

6.1. 调节输出的手动/自动无扰动切换。

在[0-1]或[0-2]窗口选择。 手动: 在[0-1]窗口头或[0-3]窗口头或[0-3]窗口头或[0-3] 手动: 在[0-1]窗口(或[0-2]帶有双输出选件) 按住 ENT 键 3 秒, 面板 MAN 灯闪烁。按增减键改变调节输出百分比。同理再次按住 ENT 键 3 秒,手动切换为 自动,面板 MAN 灯灭。

6.2. 上电缓起动功能

[1-46] 窗口, 出厂值 OFF。 0-100 秒可设置。

调节器初次上电,或超量程恢复后,控制输出将按缓起动时间线性增长。对 于负载的初次上电, 变频调速器, 钼丝, 硅碳棒, 感性负载的瞬间合闸, 在一定 程度能减弱电源的浪涌冲击电流,保护功率器件和延长加热元件的使用寿命。

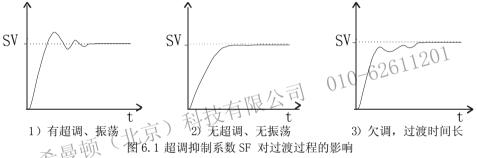
6.3. 测量值显示补偿和滤波时间常数(初学者可跳过此项)

测量值显示补偿: 传感器经标定后的线性误差和因安放位置引起的测量误 差,可在[1-49]窗口"PV-b"设置正负偏移量作为测量值 PV 的显示补偿。范 围:

 $-1999\sim2000$ 个数字,出厂值为(0)。riangle 请不要随便设定,避免测量误 差。

滤波时间常数: 在[1-50]设置测量值 PV 的一阶数字滤波时间常数。范围: 1~100 秒, 出厂值: 0, 无滤波。数值越大, 滤波越强, 但影响测量速度。具体 值现场确定。<u></u> 请不要随便设定避免影响系统的调节速度。

6.4. 设定值的限制

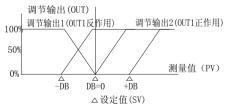

在 [1-47] [1-48] 窗口内可进一步设置 SV 设定值的下限和上限 (SV_L、SV_H),用于限制用户的设定范围。例如:测量范围 $0.0\sim800.0$ ℃,SV 的上、下限设定为:200.0 ℃、600.0 ℃,以避免脱离工艺要求的设置。

△ 请不要随便设定避免影响设定值的范围。

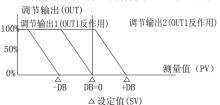
6.5. 超调抑制系数 SF

 \triangle 初次使用者建议采用出厂值(SF = 0.4)。

双输出对应二组 PID 参数的二组超调抑制系数 SF,分别在[1-7],[1-16]。调整 SF 可使被控参数的过渡过程无超调(或欠调)。原理是提前进入比例调节,延迟进行积分调节(克服积分饱和)。SF 对过渡过程的影响见图 6.1,理论上,到达新设定值,过快的调节速度,容易产生振荡,而中间图的效果较为理想。可根据工艺时间和允许超调量,现场具体选择超调抑制系数 SF $(0\sim1.00)$,SF=0 为常规 PID; SF=1 超调抑制作用强,速度慢,SF=0.4 为出厂的中间值。


6.6. 控制输出的人工补偿系数 Mr

在 PID 调节时,在比例参数 P \neq 0FF 时,该系数窗口出现。Mr 的设定范围为 $-50\sim50\%$,用于消除系统静差。


6.7. 双调节输出间的死区参数

[1-15]可设置调节输出 2 和输出 1 间的相互作用区间即死区 DB。

调整原则: 需现场试验选择 DB 宽度, 达到既可提高控制精度, 又能节能。

OUT1 为反作用、OUT2 为正作用,有正反作用交叉 (DB < 0),临界 (DB = 0) ,远离 (DB > 0)的三个状态。

双输出均为反作用,有输出 2 的提前衰减 (DB < 0),重合(DB = 0),滞后衰减 (DB > 0)。可用于主辅的控制系统,例如:减小大系统的预热时间。

图 6.2 双调节输出间的关系

7. 选件功能

7.1. 设定值偏移(双设定)

在[0-7] 窗口修改 SB 数值, 当调节器外部端子接点闭合时, 仪表的设定值为 [0-0] 窗口的 SV+SB, 此时面板的 SB/COM 灯亮。接点断开后 SB 撤消, 为[0-0] 的 SV 值。SB 可用于双设定值间的快速选择,例如: 温室的白昼控制, 加热系统 的预热或保温用涂。

7.2. 模拟变送输出(不能与通讯同时选择)

SR90 提供了一组隔离模拟变送输出,用于记录仪、串级控制等。在[1-32] 窗口分别选择模拟变送类型: PV(测量值)、SV(设定值)、OUT1 和 OUT2。在[1-33][1-34]窗口可设定变送的上、下限,用于记录仪的满偏或调零。

当模拟变送的下限大干上限设定时, 为反向变送。

7.3. 单相加热器断线和环路报警

⚠用于 SR90 系列 Y 型和 P 型的第一输出,并占用一组事件继电器。

配岛电专用的电流互感器(CT),范围: 0.1~50.0A,连接到仪表的 Hb 输入 端子上。可在[1-27] 窗口显示检测的负载 CT 电流。 010-62611201

断线报警电流监测[1-27]: 监测电流显示。

断线报警的抑制[1-29]: ON/OFF。ON 状态时,

电流值初次进入报警区时报警被抑制。只有再次进入报警区,报警才动作。 报警的锁定/无锁定"Hb-MXL技行

在[1-28]选择非锁定方式(RE):报警后电流恢复正常时,报警状态自动解 本島顿 除。

锁定方式(LC): 报警电流恢复正常时,报警被记忆到重新设置或上电解 除。

加热器断线报警"Hb_5":在[1-30]设置加热器断线报警电流值(HBA Curr): 0.1~50.0A 或 OFF。当有调节输出时,被 CT 检测到的负载电流值低于 设定的加热器断线报警电流值(如:加热丝老化电阳变大,炉丝烧断,保险丝烧 断, 固态继电器开路), 将产生加热器断线报警。可设定相应的事件继电器动 作。

加热环路报警"HL_5": 在[1-31]设置加热回路报警电流值: 0.1~50.0A 或 OFF。当有调节输出时,被测的负载电流值高于设定的报警电流值,将产生加 热回路报警。可设定相应的事件继电器动作。

7.4. 数字通信(选件,详见通讯学习软件)

1) SR90 系列的数字通讯接口

通常 RS485 通讯距离在 500 米, RS232 通讯距离在 15 米。利用地址号区分 技术, 在同一通讯线路上可控制 99 台 SR90 仪表包括其它岛电仪表的通讯。

在[1-38]窗口可选择设置通讯口**地址**(Addr): 01~255: [1-42]窗口选择通 讯波特率(BPS): 1200, 2400, 4800, 9600, 19200; [1-39]窗口选择数据位格 式(DATA): 7、8 个数据位,偶校验、无校验位,1 位停止位。此外,在[1-40]窗口选择通讯**控制码方式**: 1: Stx 2: Att; 还包括了数据应答"dELY"[1-43]**通讯时间延时**设定: 1-100; **存储方式选择**[1-44] "MEM"窗口: EEP(电可擦写),Ram(随机,不存储),r_E(输出 1, 2 随机,其余写在电可擦写)。此外还在[1-41]窗口提供了 4 种数据块的二进制(BCC)校验,

SR90 机内和通讯两种工作方式。在[1-36] "COMM"窗口,工作方式处于机内"LOC"时,上位机只能读取数据。**仅能**在上位机发送"COM"设置通讯方式命令后,才能进入全通讯工作方式。此时面板的 RUN/COM 灯亮,上位机可完成读写数据和控制。若返回机内控制,可由上位机发送 LOC 设置本机方式命令或在[1-36]窗口将工作方式手动设置为: LOC (本机)。

2) 小型集散系统

通过工业级智能光电隔离 RS232C 到 RS485 接口转换器,利用分址识别方式,可与岛电仪表和 PLC 可编程控制器组成工业监控系统。

8. 现场保护用的数字锁功能 KEY LOCK:

在完成工作参数的调整后,可在[1-1]窗口设定四种方式的参数保护:\OFF:无锁定,允许设定和修改全部参数。

锁定方式 1: 可修改设定值,自整定,手动/自动,其它修改被禁止。

锁定方式 2: 仅设定值有效, 其它修改被禁止。

锁定方式 3:全部参数的设定和修改被禁止。

▲ 警告 初学时,建议不设锁定。若发现参数不能被设置,应检查锁定窗

9. 有关仪表安装的注意事项(本说明同样适用岛电的其它仪表)

9.1. 仪表的安装

安装形式是嵌入式,安装厚度为 1-3.5 毫米面盘。安装时将仪表从仪表盘前面推入开孔,直到塑料簧片将仪表卡住。

9.2. 安装仪表的场地必须注意

- ●避免腐蚀气体、灰尘
- ●避免强烈冲击和振动
- ●环境温度在-10~50℃
- ●远离强电源和电场
- ●相对湿度在90%以下
- ●避免阳光直射和水蒸汽

9.3. 仪表的接线要求

- ●输入为热电偶时,需使用规定的补偿导线,引线电阻不得大于100 公。
- ●输入为铂电阻时,三线制,引线电阻不得大于5Ω,三条引线阻值相同。
- ●其它输入时,为了避免噪音和干扰,引线使用屏蔽电缆,要求一点接地。
- ●与仪表端子的接线建议使用标准压接型接线片(适用于 3.5 毫米螺丝)。
- ●输入和输出信号线应远离动力电缆,不得使用同一电缆管。

●仪表的接地端必需良好接大地。

9.4. 仪表抗干扰的措施

开关电源设计,工作电压 100~240VAC。

如果有来自电网或仪表周围的设备噪音干扰 , 需安装噪音滤波器。

继电器接入感性负载时,接点间需加阻容灭弧或压敏电阻保护。

代理的重要建议:

为避免电源故障(如控制柜地线开路)和工作电压长期超过 240VAC。建议采用 220V/125V 降压变压器。可有效降低仪表温升,提高测量精度。我司可提供 RU 系列 50W、100W、200W 的 R 型变压器。每台仪表功耗大约为 15W。

此外, 仪表内部电源为压敏电阻保护, 外电源必须串接 0.3A 保险管。

10. 仪表出错信息

显示	原因	
нннн	热电偶断线,PV 超上限量程 10%FS 或 RTD A 端断线	
LLLL	PV 超下限量程-10%FS 或输入极性错误	
СЛНН	热电偶冷端补偿检测高于上限 80 度	
EJLL	热电偶冷端补偿检测低于下限-20度	
b	RTD 接线 B端(或 ABB端)断线 🗐	
ньнн	监测报警电流高于 554 有 100 20	
Hbll	监测报警电流低于=5A	
本島顿 (北方)		

10.1. 热电偶或铂电阻输入的仪表显示不正常:

将热电偶输入端短路后,显示仪表自动补偿后的温度(近似室温); 三线制铂 电阻输入端接 100Ω 电阻,正常为 0 C; 如不正常,请检查输入端接线、量程代码、铂电阻的标准、传感器故障等原因,否则需返修仪表。

10.2. 直流输入的仪表显示不正常

对 $4\sim20\text{mA}$ 输入类型,输入开路/短路时,显示下限超量程。可编程显示量程设置不合理,显示数值的比例不对。

10.3. 无调节输出

将仪表设为手动控制,给定时控制灯亮。对于"Y"型输出则有继电器吸合; "P"型有 12V 直流电压; "I"型短路电流为 20mA; "V"型为 10V 直流电压。否则需返修仪表。